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Abstract— Due to the increasing complexity of space missions
and distance to exploration targets, future robotic systems used
for space exploration call for more resilience and autonomy.
Instead of minimizing the failure risk, we are focusing on
missions that will inevitably encounter significant failures and
are developing an algorithm that will autonomously reconfigure
the system controller to continue to make progress towards
the mission goal despite being in a reduced capacity state -
we call this extreme resilience. In this paper, we develop a
model-free framework to autonomously react to locomotion
failures of robotic systems. This is done by the use of a neural
network for path planning using the neuroevolution of aug-
menting topologies (NEAT) algorithm and a dynamic database
of possible moves and their effect on the system’s position
and orientation. Two modes of failure detection and resolution
are being introduced: (a) relative position failure detection,
which is triggered by large, unexpected moves and results
in a complete update of the database before a retraining of
the neural network, and (b) absolute position failure detection,
which triggers from large build-ups of position error from small
failures and will induce a retraining of the neural network
without an explicit database reset. We implement and validate
this framework on a high-fidelity planetary rover simulation
using Unreal Engine and on a hardware setup of a TurtleBot2
with a PhantomX Pincher robot arm.

I. INTRODUCTION

Many interesting future space missions will require the
ability to operate in the presence of failures [1, ch. 21, p. 13].
These might include failures of sensors, instruments, commu-
nication links, computing elements, actuators, and other com-
ponents, without the possibility of human intervention, either
due to communication delays or unknown or fast-changing
environments. These missions call for increased resilience
and more autonomy to achieve the mission objective.

For example, ocean worlds are communication-
constrained, uncertain, and dynamic due to the presence
of liquid water. Probes descending into the oceans of
Europa or Enceladus would need to have the ability to
learn from their interactions with the environment, react to
imminent hazards, and make real-time decisions to respond
to anomalies [2]. Similarly, ground missions to Venus
are subjected to immense pressure and high temperatures
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Fig. 1: The extremely resilient framework takes an objective, initial database,
and initial sate as inputs. As failures are detected, it updates the database and
retrains the path planning neural network as needed to reconfigure and reach
the mission objective despite the system’s reduced mobility. The output
images in blue apply to the TurtleBot2 hardware demonstration.

on the planetary surface [3], and high altitude missions
need to operate in the chemically reactive sulphuric-acid
clouds [4]. After extended operation, spacecraft will
eventually succumb to either of these conditions. For both
these exploration targets, autonomous failure resolution
is necessary due to constrained communications and
time-critical decisions which prohibit successful human-in-
the-loop control. Current approaches in spacecraft design
address technical risk though prevention and redundancy [5],
and environmental risk through large design margins [6].
Failure handling is heavily based on passive Fault Detection,
Isolation and Recovery (FDIR) algorithms, and hard-coded
reflexive behavior with deliberative decision making
provided from the ground [7], [8]. We, however, are instead
interested in sufficiently severe situations such that the
mission can only continue by reconfiguring the system
design on the fly and automatically, a capability we will
call extreme resilience.

Previous work has included on-orbit reconfiguration of
multi-agent formations to optimally achieve changing mis-
sion objectives [9], [10] and avoid collisions [11]. Within a
single agent, reconfiguration has been proposed for FPGAs
to improve computational performance [12], or recover from
permanent failures within a section of a FPGA [13]. For
rover systems, previous work has examined reconfiguring
the posture of the rover via redundant actuators to better
traverse slippery sandy slopes [14] and other challenging
terrain [15], as well as reconfiguring between wheeled
and legged locomotion [16], [17]. This paper explores an



approach to design reconfigurable systems that continue
to provide valuable scientific data even as they undergo
significant system failures. The main contributions are:
(i) Developing a model-free algorithm that autonomously

adjusts for unexpected behavior of the system by re-
training a neural network for path planning.

(ii) Introducing two modes of failure detection and resolu-
tion: relative position failure detection, which results in
a retraining of the network after updating the database
during a training cycle; and absolute position failure
detection, which results in a retraining of the network
from the current database.

(iii) Demonstrating and evaluating the developed approach
in a high-fidelity simulation and with a hardware im-
plementation on a low-cost TurtleBot2 mobile robotic
platform with a PhantomX Pincher robotic arm.

II. RELATED WORK

There is a history of work on resilient systems. Bongard
et al. have shown that via continuous self-modeling, four
legged robots can learn new gaits after the loss of a limb
[18]. We are interested in these large failures, but we want
to create an approach that is not reliant on any particular
model.

Quality Diversity algorithms allow for robots to learn new
skills under normal operation, which can then be used to
improve the robot’s performance during tasks. Lim et al. have
shown how a dynamics-aware quality diversity algorithm can
perform the same as a standard quality diversity algorithm
while only needing 20 times fewer samples [19]. Addition-
ally, this algorithm can be used to recover from small failures
such as the gap between simulation and reality. While these
quality diversity algorithms may have a place in future work
on the reconfiguration aspect of extreme resilience, we are
focused on the larger, potentially mission critical, failures
which may occur during operation. For this reason, we use
a genetic algorithm (GA), which is better at responding to
large unexpected changes.

Genetic algorithms have previously been applied to path
planning and failure recovery, such as to find a route through
a grid in [20]. We adopt a similar fitness function, which
rewards shorter paths and penalizes paths which run into
obstacles. GAs have also been used for guiding manipulators
around environments with obstacles [21].

Additionally, GAs have been proven to be successful at
reacting to the unknown. In [22], GAs are used to path plan
through random, unknown, and time varying environments.
Rather than focusing on unexpected surroundings, we are
focusing on large and unexpected failures. Learning has also
been used to deal with fault tolerance before. The authors
of [23] use a no reset reinforcement learning approach for
failure recovery. By sampling new gaits and leg movements
while rewarding forward progress, a four legged robot is able
to recover from failures and move to a goal, without human
intervention or resetting.

When our robot moves, we store data about the move
to be used for future path planning. Using a database to

store robotic movements is also seen in [19], however, this
was with the goal of correcting for failures arising from the
simulation to reality gap. By limiting the size of the database,
we are able to only store the most recent moves, which allows
for quick reactions and recoveries from failures.

By combining and building on this previous work, we
create a simple, model-free, algorithm for failure detection
and recovery which can handle otherwise mission critical
failures.

III. BACKGROUND

We achieve system reconfiguration by combining tech-
niques from genetic algorithms with a model-free approach
for navigation.

A. Evolutionary Algorithms

Evolutionary algorithms (EAs) are meta-heuristics that
take inspiration from the biological process of evolution
to generate solutions to complex optimization and search
problems. A very popular EA is the genetic algorithm
(GA) described in detail by Goldberg in [24]. GAs work
by evolving an initially random candidate solution towards
improved outcomes, which is represented by a fitness score.
GAs use mutation and crossover as a selection strategy
to combine genes from the individuals in a population
to improve the fitness of the the offspring for the next
generation. This selection strategy is biased towards higher
fitness scores. GAs have been widely used and demonstrated
to be efficient in many real-world applications, such as net-
work load balancing [25], [26], [27], scheduling [28], [29],
forecasting [30], [31], [32], encryption [33], and in game
settings [34], [35].

1) NEAT: The genetic algorithm used in the paper is
the neuroevolution of augmented topologies (NEAT) algo-
rithm [36], which evolves the topology and the weights of
Artificial Neural Networks (ANNs).

Three techniques are the basis of the NEAT approach:
tracking genes using historical markings to allow crossover
without the need for extensive topological analysis, specia-
tion of the population to protect topological innovation, and
incrementally growing from minimal structure — resulting
in NEAT being able to simultaneously increase complexity
and optimize solutions. Each of these techniques is crucial
for NEAT’s performance [36]. Historical markings are used
to determine the origin of each gene and then assign an inno-
vation number to this gene. This innovation number allows
the algorithm to match up genes and perform crossover by
randomly selecting one gene from each innovation number
to create the offspring genome. This ensures that genomes
stay compatible.

Speciation allows for the survival of species with smaller
genomes, protecting them from elimination for a specific
time to allow them to optimize their structure. The networks
first compete within their species before they compete with
the entire population. The process is possible due to the use
of historical markings, which allows NEAT to compute the



degree of similarity between networks. Speciation ensures a
diverse set of topologies of neural networks in a population.

While the initial population consists of very simple net-
works without any hidden nodes, over the generations the
networks gradually expand and become more complex by
adding or disabling nodes and altering their weights. As
new structures evolve, only beneficial structures will survive.
This process is called complexification and it ensures that
networks do not become more complex than necessary [37].
NEAT has been applied to multiple domains such as game
settings, including the game Go [38], the NERO video
game [39], Atari [40], and Sonic the Hedgehog [41], as
well as robotic applications such as the robust control of
a quadrotor [42].

IV. ALGORITHM DESIGN

The goal of this algorithm is to move a robotic system
from from a starting point to a goal point through a known
safe corridor while recognizing and recovering from any
failures in locomotion that occur along the way. Because the
focus of this algorithm is on locomotion failure detection
and recovery, we assume apriori knowledge of this safe
corridor and assume no sensor or computational failures.
This algorithm works by breaking up the robot’s motions
into discrete moves, each of which correspond to a set of
driving inputs to be performed for a specific amount of
time. Through experiments in the results section, we will
demonstrate that due to the failure detection and replanning
done by the algorithm, the robot will always reach its goal
barring a complete failure in locomotion.

A. Neural Network Design

Because our algorithm uses NEAT to build the neural
network used during path planning, only the number of input
and output nodes need to be specified. Each network starts
with five input nodes: the first two represent the robot’s
spacial x and y coordinates, the third represents the robot’s
orientation about the z axis, and the final two represent the
x and y coordinates of the next point in the list of points
that specify the safety corridor. We call this next point in
the safety corridor a “subgoal point,” because it may or may
not be the final point the robot is trying to reach. Each of
the output nodes corresponds to a move type that the robot
can perform. The NEAT algorithm evolves all hidden nodes,
connections, and weights.

Structuring our network in this way allows us to give the
network the robot’s position and the goal position and receive
out the next move the robot should preform (the move which
corresponds with the most activated output node). In order to
complete the whole path through the safety corridor, a new
network is created for every subgoal point of the journey
until the goal has been reached.

B. Neural Network Fitness

Each time we need to generate a network for the next
subgoal point, or plan a new path after a failure, NEAT is
used to generate a population of potential networks, which

Algorithm 1: Extremely Resilient Navigation

1 def resilient travel(pi, pg, pretrained database):
2 moves← replan(pi, pg);
3 resilient move(moves, pretrained database, pg);

4 def resilient move(moves, database, pg):
5 for m = m0, . . . ,mf ∈ moves do
6 pi ← get current position();
7 drive(m);
8 pf ← get current position();
9 ∆← get position change(pi, pf );

10 if reached goal(pf , pg) then
11 return;

12 if relative position failure(∆, database) then
13 new database← retrain();
14 new moves← replan(pi, pg);
15 resilient move(new moves, new database);
16 return;

17 database← add to database(database,m,∆);
18 if absolute position failure(pf ,moves) then
19 new moves← replan(pi, pg);
20 resilient move(new moves, database);
21 return;

22 if out of safe zone(pf ) then
23 inverse drive(m);
24 new moves← replan(pi, pg);
25 resilient move(new moves, database);
26 return;

27 if not reached goal(pf ) then
28 new moves← replan(pi, pg);
29 resilient move(new moves, database);

30 return;

must each be tested and assigned a fitness score to inform
NEAT’s creation of the next generation of networks. To test
each of these networks, we input the starting robot position
and subgoal position into the network. The network will
select a move via output node activation, which will then
be simulated in the environment, assessed, and the resulting
simulated position is fed back into the network to choose the
next move.

This process continues until either the network succeeds
in providing a viable path for the robot that will result
in it reaching the subgoal, or the network fails by either
suggesting a move that brings the robot out of the safety
corridor or suggesting a path that contains more than a
predetermined number of moves which bring the robot away
from the goal. These fail conditions exist both to minimize
risk to the robot and encourage efficient paths. When the test
is over, the following equation is used to assign the network
a fitness score.

F =

m2,...,mf∑
mi

d(mi−1)− d(mi) (1)



While meeting one of the failure conditions stops the
network’s test, its fitness score will remain the same so it
can still be used for creating the next generation.

For each move mi proposed by the network, the distance
function d(mi) returns the distance remaining to the subgoal
point after performing that move. Thus, (1) rewards the
network each time it suggests a move that brings it closer to
the subgoal and punishes moves that bring it further away
from the subgoal. While this fitness function can tailored to
better apply to specific systems, this model-free function has
proven strong enough to work in both the simulation and
hardware demonstrations.

C. Training the Robot

For the algorithm to accurately simulate and score neural
networks as they are provided by NEAT, having an idea of
how each move will effect the robot’s position is crucial. To
satisfy this need, the algorithm builds up a database of what
moves the robot is capable of and how each of these moves
effects the robot’s position and orientation during a process
called training. During training — which happens prior to the
robot’s deployment in the field — the robot completes each
move multiple times. By recording initial and final positions
and orientations as each move is performed, the changes in
position and orientation can be calculated and inputted into
the database. This method of training is entirely model-free,
and the moves taught to the robot are user defined.

To calculate changes in position consistently, the database
keeps track of the change in position parallel and perpendic-
ular to the direction the robot is facing prior to the move,
and how much the robot rotates during the move, as given
by:

∆∥ = (xf − xi) · cos θi + (yf − yi) · sin θi (2)

∆⊥ = −(xf − xi) · sin θi + (yf − yi) · cos θi (3)

∆θ = θf − θi (4)

where xi, xf refer to the initial and final positions respec-
tively, and similarly for yi, yf , and θi, θf . Using (2), (3),
and (4), the initial and final coordinates and orientation can
be translated from the global coordinate frame to the robot’s
coordinate frame before the move occurred. This common
frame allows each move to be compared to the other moves
in the database, thus allowing the algorithm to identify when
a move gives an unexpected result.

When evaluating neural networks, the algorithm uses the
average ∆∥, ∆⊥, and ∆θ of the entries for a specific move
to get an accurate estimate of how that move will effect the
robot’s pose.

While this database is created during the initial training, it
continues to be updated as the robot performs moves in the
field. The database is designed to only hold a predetermined
number of entries per move, so when a move is performed
in the field, the change in position from this move is added
to the database and the oldest recorded position change is
removed. Thus, if any slight variations in the environment

were to arise, or a small failure were to occur that only
slightly altered the robot’s movements, the database would
soon fill up with accurate data while removing the outdated
entries.

In the event of a large and sudden failure, the database
being used becomes obsolete, since the effect each move
has on the robot’s pose will change dramatically. When this
type of failure is detected, the old database is cleared and a
round of training is completed in the field. This retraining
is different from the initial training in two ways. First, every
time a move is performed and recorded, the reverse of that
move (if the move is reversible) is performed so the robot
remains in the same spot after the retraining is complete.
Second, the retraining may perform each move less times
than the initial training in an effort to reduce time spent
traveling or to reduce the risk that comes from moving with
a reconfigured part, as seen when we retrain an arm for
locomotion during our hardware demonstration.

D. Failure Detection

There are two methods of failure detection used by the
algorithm. The first, called relative position failure detection,
attempts to recognize large failures as soon as they occur
by considering the relative position changes of the robot
after each move and determines whether the move result
is unexpected (meaning a failure has likely occurred) or
not. The second type of failure detection is absolute failure
detection, which looks at the absolute position of the robot
in the global coordinate frame to determine whether a failure
has occurred. This method recognizes small failures that
are not big enough to trigger the relative position failure
detection but still cause the robot to stray significantly from
its planned path over the course of many moves.

1) Relative Position Failure Detection: After the position
and orientation changes have been calculated with (2), (3),
and (4), each of ∆∥, ∆⊥, and ∆θ are compared to the
other entries for that move in the database, and the move
is assigned a set of z-scores (z∥, z⊥, zθ) that correspond to
each of the changes in position or orientation, calculated as:

z =
∆− µ

σ
(5)

The z-score, z, simply provides the number of standard
deviations, σ, from the mean, µ, a particular change, ∆, lies
from the reference population held in the database. While
the specific threshold of z-score that results from a failure
can be tuned depending on the size of the database and the
consistency of a system, this method of failure detection
has proven effective in both the hardware and simulation
demonstrations [43].

Because the failures detected by this method greatly effect
the robot’s movements, when this method detects a failure
the database is retrained and a new path is planned.

2) Absolute Position Failure Detection: If a failure is too
subtle to result in a large z-score, it will not trigger the
relative position failure detection. Absolute position failure
detection combats this by checking what the algorithm



Fig. 2: The TurtleBot must navigate around the blue striped hazard by following the yellow nominal path to reach the green goal circle. On the right, the
TurtleBot’s travel during left and right wheel failures can be seen. These failures were injected suddenly at similar locations and brought the respective
wheel down to 50% of its nominal speed. Retraining has been omitted for clarity.

expects the robot’s global position and orientation to be
after each move has been completed and comparing it to
the robot’s actual pose. Because it takes several moves for
small failures to build up and become noticeable, by the time
this failure detection is triggered, the database already been
repopulated by accurate representations of the effects of each
move. Thus, the robot skips retraining and only replans. Any
residual database entries from before the subtle failure will
be discarded as the robot continues to move and new entries
are added to the database.

E. Reconfiguration

In some instances, a robot loses a critical amount of mobil-
ity and becomes stuck. In the extremely resilient system we
envision, the robot will reconfigure itself by taking something
not initially designed to aid in the robot’s mobility and
repurposing it. This is shown in the TurtleBot2 hardware
demonstration where, upon losing total function in one or
both of its wheels, the algorithm will use the robotic arm
initially designed for manipulating the environment around
the robot and reconfigure it into a pushing device. While
doing so risks damage to the arm, the alternative is total
mission failure.

In an event where reconfiguration is required, new move
types will be added to the database and an in-field training
will occur to populate the database entries. Additionally, new
output nodes will be added to the neural network structure,
so these new moves can be included in future navigation.

Reconfiguration is at the core of extreme resilience, as
it allows a robot to continue a mission when an otherwise
mission-critical failure occurs.

V. EXPERIMENTAL SETUP

To demonstrate the effectiveness of the extremely resilient
navigation algorithm, two experimental setups are consid-
ered. The first is a hardware demonstration of a mobile base
with a robotic arm on top, and the second is a software
simulation of a lunar rover. These demonstrations also show
the model-free nature of this method, since these robots differ
significantly in many ways, including wheel configuration,
controller inputs, and size. Despite these differences, both
have the goal of reaching a specific location through a safe
corridor and both experience failures along the way.

A. TurtleBot Hardware Demonstration

This hardware demonstration uses a two-wheeled Turtle-
Bot2 Kobuki mobile base 1 with a PhantomX Pincher Robot
Arm 2 attached to the top. The laptop that acts as the
TurtleBot’s processor has been replaced by an NVIDIA
Jetson Nano to reduce the overall system’s weight and
increase mobility. The Jetson Nano is powered by an on-
board rechargeable 5V power supply, making the whole
system untethered and therefore entirely mobile. Sensing
failures are outside the scope of this work, so an OptiTrack
motion capture system is used to measure the TurtleBot’s
position in real-time.

During training, the TurtleBot is taught to move forward,
pivot both clockwise and counterclockwise around each
wheel, and spin both clockwise and counterclockwise in
place.

At any point during the test, the operator can inject a
failure in one or both of the wheels of the robotic base which
will limit their speed. If the algorithm determines that at least
one wheel has completely failed, it will begin to retrain the
robot’s original moves in addition to reconfiguring the arm
and training three arm moves: a pivot clockwise, a pivot
counterclockwise, and a push. Because complete reconfigu-
ration is outside of the scope of this paper, these three arm
movements have been preprogrammed, but not trained for
in the initial training. Once the TurtleBot reconfigures itself
and thus regains the ability to move, it plans a new path to
its goal.

B. Moon Rover Simulation

To demonstrate how this approach applies to planetary
exploration missions, a simulation in a realistic environment
is required. The setup is built using AirSim, a high-fidelity
simulator developed by Microsoft [44]. AirSim is based on
Unreal Engine3, a real-time game engine that is free for
research and non-commercial use and has become widely
used for simulation and visualization purposes. The environ-
ment chosen for the demonstration is a simulated a Moon

1https://www.turtlebot.com/turtlebot2/
2https://www.trossenrobotics.com/p/PhantomX-Pincher-Robot-Arm.aspx
3https://www.unrealengine.com/

https://www.turtlebot.com/turtlebot2/
https://www.trossenrobotics.com/p/PhantomX-Pincher-Robot-Arm.aspx
https://www.unrealengine.com/


Fig. 3: The TurtleBot’s navigation under only absolute position failure detection. The database used for each of these runs holds five entries per move type.
There are two failures detected in both the no injected failure and 83% failure tests and four in the 67% failure test.

landscape 4 on which the default AirSim car, acting as a
rover, needs to reach predetermined target locations while
being subjected to failures.

The rover is taught to move straight forward, straight
backwards, and how to make hard and soft right and left
turns. Each move is executed for three seconds after which
the brakes are applied until the rover comes to a stop.
During the mission, a steering drift may be injected, causing
the rover to always steer slightly more towards a particular
direction than expected. All the information required to use
our algorithm, such as rover position and orientation, is
gathered from the AirSim API.

VI. RESULTS

Using the TurtleBot hardware demonstration and the Moon
rover simulation, in this section we show the trajectories
taken by the robots under different failure modes and condi-
tions. Extremely resilient navigation is compared to a system
which is trained before deployment and uses the NEAT
algorithm to plan a path, but does not update the database,
replan, retrain, or detect failures.

A. TurtleBot Hardware Demonstration

The main result of extremely resilient navigation is the
ability for a system to recover from a locomotion failure
and still reach a goal. The method’s effectiveness is shown
in Fig. 2, where the TurtleBot is subjected to a right or left
single wheel partial failure but still reaches its goal. Because
this failure removes the ability for the TurtleBot to move
directly forward, the NEAT algorithm finds patterns of moves
which, when done together, result in an overall forward
motion. In the example of the left wheel failure, the last leg
of the journey consists of “forward” motions (which now
drift the robot towards the left due to the failure) followed
by clockwise pivots, which reset the TurtleBot’s orientation
so it can perform more forward moves. Similar behavior is
seen in the case of the right wheel failure. After the failure
is recognized, the robot pivots left, which allows it to curve
to the next subgoal near (1.5, 0.5) and continue curving until

4https://www.unrealengine.com/marketplace/en-US/product/moon-
landscape-01

it performs one more orientation reset just before reaching
the goal.

Fig. 1 shows how reconfiguration in extremely resilient
navigation can allow a system to recover from a critical
mobility failure. Around halfway through the TurtleBot’s
journey, it experiences a total right wheel failure, restricting
its motion to pivots around the broken right wheel. However,
the algorithm reconfigures the arm and trains the robot to
use it to push itself forward and turn itself clockwise and
counterclockwise. Because the arm movements have not
been trained before, the TurtleBot is unable to train them
in place, and the resulting movements from their training
can be seen in yellow. The algorithm plans a path that still
takes advantage of the working wheel to make a turn around
the final corner, showcasing how reconfiguration allows all
aspects of the robot to work together.

To demonstrate the effectiveness of a dynamic database
and absolute position failure detection, we consider an ex-
periment in which the relative position detection is disabled
and the TurtleBot begins with a database of moves from a
training with no failures. Before the tests are run, the right
wheel speed is reduced to either 83% or 67% its nominal
value, or left unchanged as a control. The results are sown
in Fig. 3. Despite there being no injected failures in the
control trail, absolute failure detection is still triggered twice.
This is due to the natural inconsistencies between moves that
arise due to noise during the TurtleBot’s normal operation,
and is one of the things absolute failure protection helps
protect against. Under the smaller 83% right wheel failure,
the absolute position failure detection is also triggered twice,
which demonstrates the importance of a dynamic database.
By the time the absolute failure detection is triggered, the
database has already been updated enough to not require
retraining, and thus only replanning is enough. The 67%
failure plot shows how the TurtleBot reacts to a failure
that usually would be caught by relative position failure
detection when only absolute failure detection is present.
While absolute failure detection is triggered in this trail more
than the other two trails, the robot is still able to recover
and complete the entire last leg of the path without any
replanning.

https://www.unrealengine.com/marketplace/en-US/product/moon-landscape-01
https://www.unrealengine.com/marketplace/en-US/product/moon-landscape-01


Fig. 4: The rover on the moon is pictured on the left. On the right, the rover’s failure detection is shown when reacting to a rightward steering failure of
10% of the maximum steering value at different z-score thresholds. Too low of a threshold results in false positives, while too high of a z-score threshold
results in missing the failure completely. In the 1000 z-score example, the rover leaves the safety threshold twice. Retraining is omitted for clarity.

B. Moon Rover Simulation

Because relative failure detection is driven by calculating
the z-scores of each move compared to the moves in the
database, it is important to tune the z-score to the particular
system. This is demonstrated by the experiment summarized
in Fig. 4, where the rover experiences a steering drift that
is 10% of the maximum steering value more to the right.
When too small of a z-score is chosen, relative position
failure detection is triggered too often, resulting in many
unnecessary retraining rounds that waste time and, in the
case of a real life rover, energy.

On the other hand, picking too large of a z-score can
prove detrimental. In the plot on the right of Fig. 4, the rover
drives out of the safety corridor twice due to its inability to
accurately path plan with its outdated database. By picking
a proper z-score, both of these extremes can be avoided.

VII. CONCLUSIONS & FUTURE WORK

In this paper we have outlined a model-free method for
navigating through a safe corridor in the face of failures.
We introduce two failure detection methods, relative position
failure and absolute position failure, which are designed
to catch big and small failures respectively. The use of
a dynamic database to capture moves and adapt to small
changes in the environment as they arise makes both of
these failure detection methods possible, and allows for the
NEAT algorithm to evolve neural networks for path planning.
To demonstrate the effectiveness and the model-free aspect
of this method, it has been applied to both a robot with a
two-wheeled mobile base with a robotic arm and a rover
simulation with four wheels and a different set of control
inputs.

In the future, the method outlined in this paper could be
applied to other aspects of the robot beyond recovering from
locomotion failures, such as sensor failures or power system
failures. Automatic reconfiguration is the key next step in
designing extremely resilient systems. When implemented,
the robot would be able to reconfigure itself without the need
for pre-designed fall back moves by learning the database
on-the-fly. In such a system, the need to preprogram the arm
movements into the TurtleBot would disappear and the robot

would be able to figure out how to use the arm to move itself
on its own.
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